Papers
Topics
Authors
Recent
2000 character limit reached

Unleashing the Power of Generic Segmentation Models: A Simple Baseline for Infrared Small Target Detection (2409.04714v1)

Published 7 Sep 2024 in cs.CV

Abstract: Recent advancements in deep learning have greatly advanced the field of infrared small object detection (IRSTD). Despite their remarkable success, a notable gap persists between these IRSTD methods and generic segmentation approaches in natural image domains. This gap primarily arises from the significant modality differences and the limited availability of infrared data. In this study, we aim to bridge this divergence by investigating the adaptation of generic segmentation models, such as the Segment Anything Model (SAM), to IRSTD tasks. Our investigation reveals that many generic segmentation models can achieve comparable performance to state-of-the-art IRSTD methods. However, their full potential in IRSTD remains untapped. To address this, we propose a simple, lightweight, yet effective baseline model for segmenting small infrared objects. Through appropriate distillation strategies, we empower smaller student models to outperform state-of-the-art methods, even surpassing fine-tuned teacher results. Furthermore, we enhance the model's performance by introducing a novel query design comprising dense and sparse queries to effectively encode multi-scale features. Through extensive experimentation across four popular IRSTD datasets, our model demonstrates significantly improved performance in both accuracy and throughput compared to existing approaches, surpassing SAM and Semantic-SAM by over 14 IoU on NUDT and 4 IoU on IRSTD1k. The source code and models will be released at https://github.com/O937-blip/SimIR.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.