Geometrical Approach to Logical Qubit Fidelities of Neutral Atom CSS Codes (2409.04324v2)
Abstract: Encoding quantum information in a quantum error correction (QEC) code enhances protection against errors. Imperfection of quantum devices due to decoherence effects will limit the fidelity of quantum gate operations. In particular, neutral atom quantum computers will suffer from correlated errors because of the finite lifetime of the Rydberg states that facilitate entanglement. Predicting the impact of such errors on the performance of topological QEC codes is important in understanding and characterising the fidelity limitations of a real quantum device. Mapping a QEC code to a $\mathbb{Z}2$ lattice gauge theory with disorder allows us to use Monte Carlo techniques to calculate upper bounds on error rates without resorting to an optimal decoder. In this Article, we adopt this statistical mapping to predict error rate thresholds for neutral atom architecture, assuming radiative decay to the computational basis, leakage and atom loss as the sole error sources. We quantify this error rate threshold $p\text{th}$ and bounds on experimental constraints, given any set of experimental parameters.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.