Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Fidelity Estimation from Binary Measurements for Discrete and Continuous Variable Systems

Published 6 Sep 2024 in quant-ph, math-ph, math.MP, math.ST, and stat.TH | (2409.04189v1)

Abstract: Estimating the fidelity between a desired target quantum state and an actual prepared state is essential for assessing the success of experiments. For pure target states, we use functional representations that can be measured directly and determine the number of copies of the prepared state needed for fidelity estimation. In continuous variable (CV) systems, we utilise the Wigner function, which can be measured via displaced parity measurements. We provide upper and lower bounds on the sample complexity required for fidelity estimation, considering the worst-case scenario across all possible prepared states. For target states of particular interest, such as Fock and Gaussian states, we find that this sample complexity is characterised by the $L1$-norm of the Wigner function, a measure of Wigner negativity widely studied in the literature, in particular in resource theories of quantum computation. For discrete variable systems consisting of $n$ qubits, we explore fidelity estimation protocols using Pauli string measurements. Similarly to the CV approach, the sample complexity is shown to be characterised by the $L1$-norm of the characteristic function of the target state for both Haar random states and stabiliser states. Furthermore, in a general black box model, we prove that, for any target state, the optimal sample complexity for fidelity estimation is characterised by the smoothed $L1$-norm of the target state. To the best of our knowledge, this is the first time the $L1$-norm of the Wigner function provides a lower bound on the cost of some information processing task.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.