Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Extending a result of Carlitz and McConnel to polynomials which are not permutations (2409.04045v1)

Published 6 Sep 2024 in math.CO and math.NT

Abstract: Let $D$ denote the set of directions determined by the graph of a polynomial $f$ of $\mathbb{F}_q[x]$, where $q$ is a power of the prime $p$. If $D$ is contained in a multiplicative subgroup $M$ of $\mathbb{F}_q\times$, then by a result of Carlitz and McConnel it follows that $f(x)=ax{pk}+b$ for some $k\in \mathbb{N}$. Of course, if $D\subseteq M$, then $0\notin D$ and hence $f$ is a permutation. If we assume the weaker condition $D\subseteq M \cup {0}$, then $f$ is not necessarily a permutation, but Sziklai conjectured that $f(x)=ax{pk}+b$ follows also in this case. When $q$ is odd, and the index of $M$ is even, then a result of Ball, Blokhuis, Brouwer, Storme and Sz\H onyi combined with a result of McGuire and G\"olo\u{g}lu proves the conjecture. Assume $\deg f\geq 1$. We prove that if the size of $D{-1}D={d{-1}d' : d\in D\setminus {0},\, d'\in D}$ is less than $q-\deg f+2$, then $f$ is a permutation of $\mathbb{F}_q$. We use this result to verify the conjecture of Sziklai.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.