Papers
Topics
Authors
Recent
Search
2000 character limit reached

On a combinatorial description of the Gorenstein index for varieties with torus action

Published 5 Sep 2024 in math.AG | (2409.03649v1)

Abstract: The anticanonical complex is a combinatorial tool that was invented to extend the features of the Fano polytope from toric geometry to wider classes of varieties. In this note we show that the Gorenstein index of Fano varieties with torus action of complexity one (and even more general of the so-called general arrangement varieties) can be read off its anticanonical complex in terms of lattice distances in full analogy to the toric Fano polytope. As an application we give concrete bounds on the defining data of almost homogeneous Fano threefolds of Picard number one having a reductive automorphism group with two-dimensional maximal torus depending on their Gorenstein index.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.