Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extrinsic Principal Component Analysis

Published 5 Sep 2024 in stat.ME | (2409.03572v2)

Abstract: One develops a fast computational methodology for principal component analysis on manifolds. Instead of estimating intrinsic principal components on an object space with a Riemannian structure, one embeds the object space in a numerical space, and the resulting chord distance is used. This method helps us analyzing high, theoretically even infinite dimensional data, from a new perspective. We define the extrinsic principal sub-manifolds of a random object on a Hilbert manifold embedded in a Hilbert space, and the sample counterparts. The resulting extrinsic principal components are useful for dimension data reduction. For application, one retains a very small number of such extrinsic principal components for a shape of contour data sample, extracted from imaging data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.