Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedPCL-CDR: A Federated Prototype-based Contrastive Learning Framework for Privacy-Preserving Cross-domain Recommendation (2409.03294v2)

Published 5 Sep 2024 in cs.IR

Abstract: Cross-domain recommendation (CDR) aims to improve recommendation accuracy in sparse domains by transferring knowledge from data-rich domains. However, existing CDR approaches often assume that user-item interaction data across domains is publicly available, neglecting user privacy concerns. Additionally, they experience performance degradation with sparse overlapping users due to their reliance on a large number of fully shared users for knowledge transfer. To address these challenges, we propose a Federated Prototype-based Contrastive Learning (CL) framework for Privacy Preserving CDR, called FedPCL-CDR. This approach utilizes non-overlapping user information and differential prototypes to improve model performance within a federated learning framework. FedPCL-CDR comprises two key modules: local domain (client) learning and global server aggregation. In the local domain, FedPCL-CDR first clusters all user data and utilizes local differential privacy (LDP) to learn differential prototypes, effectively utilizing non-overlapping user information and protecting user privacy. It then conducts knowledge transfer by employing both local and global prototypes returned from the server in a CL manner. Meanwhile, the global server aggregates differential prototypes sent from local domains to learn both local and global prototypes. Extensive experiments on four CDR tasks across Amazon and Douban datasets demonstrate that FedPCL-CDR surpasses SOTA baselines. We release our code at https://github.com/Lili1013/FedPCL CDR

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com