Papers
Topics
Authors
Recent
2000 character limit reached

On Oriented Diameter of Power Graphs

Published 4 Sep 2024 in math.CO and cs.DM | (2409.02457v4)

Abstract: In this paper, we study the oriented diameter of power graphs of groups. We show that a $2$-edge connected power graph of a finite group has oriented diameter at most $4$. We prove that the power graph of the cyclic group of order $n$ has oriented diameter $2$ for all $n\neq 1,2,4,6$. For non-cyclic finite nilpotent groups, we show that the oriented diameter of corresponding power graphs is at least $3$. Moreover, we provide necessary and sufficient conditions for the oriented diameter of $2$-edge connected power graphs of finite non-cyclic nilpotent groups to be either $3$ or $4$. This, in turn, gives an algorithm for computing the oriented diameter of the power graph of a given nilpotent group that runs in time polynomial in the size of the group.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 1 like about this paper.