Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantum Algorithms for One-Sided Crossing Minimization (2409.01942v1)

Published 3 Sep 2024 in quant-ph and cs.DS

Abstract: We present singly-exponential quantum algorithms for the One-Sided Crossing Minimization (OSCM) problem. Given an $n$-vertex bipartite graph $G=(U,V,E\subseteq U \times V)$, a $2$-level drawing $(\pi_U,\pi_V)$ of $G$ is described by a linear ordering $\pi_U: U \leftrightarrow {1,\dots,|U|}$ of $U$ and linear ordering $\pi_V: V \leftrightarrow {1,\dots,|V|}$ of $V$. For a fixed linear ordering $\pi_U$ of $U$, the OSCM problem seeks to find a linear ordering $\pi_V$ of $V$ that yields a $2$-level drawing $(\pi_U,\pi_V)$ of $G$ with the minimum number of edge crossings. We show that OSCM can be viewed as a set problem over $V$ amenable for exact algorithms with a quantum speedup with respect to their classical counterparts. First, we exploit the quantum dynamic programming framework of Ambainis et al. [Quantum Speedups for Exponential-Time Dynamic Programming Algorithms. SODA 2019] to devise a QRAM-based algorithm that solves OSCM in $O*(1.728n)$ time and space. Second, we use quantum divide and conquer to obtain an algorithm that solves OSCM without using QRAM in $O*(2n)$ time and polynomial space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Fast FAST. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in Computer Science, pages 49–58. Springer, 2009. doi:10.1007/978-3-642-02927-1\_6.
  2. Quantum speedups for exponential-time dynamic programming algorithms. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1783–1793. SIAM, 2019. doi:10.1137/1.9781611975482.107.
  3. A note on exact algorithms for vertex ordering problems on graphs. Theory Comput. Syst., 50(3):420–432, 2012. URL: https://doi.org/10.1007/s00224-011-9312-0, doi:10.1007/S00224-011-9312-0.
  4. Quantum graph drawing. In Ryuhei Uehara, Katsuhisa Yamanaka, and Hsu-Chun Yen, editors, WALCOM: Algorithms and Computation - 18th International Conference and Workshops on Algorithms and Computation, WALCOM 2024, Kanazawa, Japan, March 18-20, 2024, Proceedings, volume 14549 of Lecture Notes in Computer Science, pages 32–46. Springer, 2024. doi:10.1007/978-981-97-0566-5\_4.
  5. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.
  6. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
  7. Fixed parameter algorithms for one-sided crossing minimization revisited. In Giuseppe Liotta, editor, Graph Drawing, 11th International Symposium, GD 2003, Perugia, Italy, September 21-24, 2003, Revised Papers, volume 2912 of Lecture Notes in Computer Science, pages 332–344. Springer, 2003. doi:10.1007/978-3-540-24595-7\_31.
  8. Fixed parameter algorithms for one-sided crossing minimization revisited. J. Discrete Algorithms, 6(2):313–323, 2008. URL: https://doi.org/10.1016/j.jda.2006.12.008, doi:10.1016/J.JDA.2006.12.008.
  9. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. In Stephen G. Kobourov and Michael T. Goodrich, editors, Graph Drawing, 10th International Symposium, GD 2002, Irvine, CA, USA, August 26-28, 2002, Revised Papers, volume 2528 of Lecture Notes in Computer Science, pages 118–129. Springer, 2002. doi:10.1007/3-540-36151-0\_12.
  10. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica, 40(1):15–31, 2004. URL: https://doi.org/10.1007/s00453-004-1093-2, doi:10.1007/S00453-004-1093-2.
  11. A quantum algorithm for finding the minimum. CoRR, quant-ph/9607014, 1996. URL: http://arxiv.org/abs/quant-ph/9607014.
  12. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.
  13. Ranking and drawing in subexponential time. In Costas S. Iliopoulos and William F. Smyth, editors, Combinatorial Algorithms - 21st International Workshop, IWOCA 2010, London, UK, July 26-28, 2010, Revised Selected Papers, volume 6460 of Lecture Notes in Computer Science, pages 337–348. Springer, 2010. doi:10.1007/978-3-642-19222-7\_34.
  14. Quantum tutte embeddings. CoRR, abs/2307.08851, 2023. URL: https://doi.org/10.48550/arXiv.2307.08851, arXiv:2307.08851, doi:10.48550/ARXIV.2307.08851.
  15. Quantum random access memory. Phys. Rev. Lett., 100:160501, Apr 2008. URL: https://link.aps.org/doi/10.1103/PhysRevLett.100.160501, doi:10.1103/PhysRevLett.100.160501.
  16. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L. Miller, editor, STOC 1996, pages 212–219. ACM, 1996. doi:10.1145/237814.237866.
  17. Aram W. Harrow. Quantum algorithms for systems of linear equations. In Encyclopedia of Algorithms, pages 1680–1683. 2016. doi:10.1007/978-1-4939-2864-4\_771.
  18. Exact and heuristic algorithms for 2-layer straightline crossing minimization. In Franz-Josef Brandenburg, editor, Graph Drawing, Symposium on Graph Drawing, GD ’95, Passau, Germany, September 20-22, 1995, Proceedings, volume 1027 of Lecture Notes in Computer Science, pages 337–348. Springer, 1995. URL: https://doi.org/10.1007/BFb0021817, doi:10.1007/BFB0021817.
  19. How to rank with few errors. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 95–103. ACM, 2007. doi:10.1145/1250790.1250806.
  20. A fast and simple subexponential fixed parameter algorithm for one-sided crossing minimization. Algorithmica, 72(3):778–790, 2015. URL: https://doi.org/10.1007/s00453-014-9872-x, doi:10.1007/S00453-014-9872-X.
  21. David J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge University Press, 2003.
  22. One sided crossing minimization is np-hard for sparse graphs. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph Drawing, 9th International Symposium, GD 2001 Vienna, Austria, September 23-26, 2001, Revised Papers, volume 2265 of Lecture Notes in Computer Science, pages 115–123. Springer, 2001. doi:10.1007/3-540-45848-4\_10.
  23. Two-layer planarization in graph drawing. In Kyung-Yong Chwa and Oscar H. Ibarra, editors, Algorithms and Computation, 9th International Symposium, ISAAC ’98, Taejon, Korea, December 14-16, 1998, Proceedings, volume 1533 of Lecture Notes in Computer Science, pages 69–78. Springer, 1998. doi:10.1007/3-540-49381-6\_9.
  24. Quantum Computation and Quantum Information (10th Anniversary edition). Cambridge University Press, 2016.
  25. Exponential-time quantum algorithms for graph coloring problems. Algorithmica, 84(12):3603–3621, 2022. URL: https://doi.org/10.1007/s00453-022-00976-2, doi:10.1007/S00453-022-00976-2.
  26. Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125, 1981. doi:10.1109/TSMC.1981.4308636.
  27. William Thomas Tutte. How to draw a graph. Proceedings of the London Mathematical Society, 3(1):743–767, 1963.
  28. A branch and bound algorithm for minimizing the number of crossing arcs in bipartite graphs. European journal of operational research, 90(2):303–319, 1996. doi:10.1016/0377-2217(95)00356-8.
  29. Gerhard J. Woeginger. Open problems around exact algorithms. Discret. Appl. Math., 156(3):397–405, 2008. URL: https://doi.org/10.1016/j.dam.2007.03.023, doi:10.1016/J.DAM.2007.03.023.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.