Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems (2409.01899v1)

Published 3 Sep 2024 in cs.LG, cs.NA, and math.NA

Abstract: This paper introduces an efficient tensor-vector product technique for the rapid and accurate approximation of integral operators within physics-informed deep learning frameworks. Our approach leverages neural network architectures to evaluate problem dynamics at specific points, while employing Gaussian quadrature formulas to approximate the integral components, even in the presence of infinite domains or singularities. We demonstrate the applicability of this method to both Fredholm and Volterra integral operators, as well as to optimal control problems involving continuous time. Additionally, we outline how this approach can be extended to approximate fractional derivatives and integrals and propose a fast matrix-vector product algorithm for efficiently computing the fractional Caputo derivative. In the numerical section, we conduct comprehensive experiments on forward and inverse problems. For forward problems, we evaluate the performance of our method on over 50 diverse mathematical problems, including multi-dimensional integral equations, systems of integral equations, partial and fractional integro-differential equations, and various optimal control problems in delay, fractional, multi-dimensional, and nonlinear configurations. For inverse problems, we test our approach on several integral equations and fractional integro-differential problems. Finally, we introduce the pinnies Python package to facilitate the implementation and usability of the proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.