Machine learning approach for vibronically renormalized electronic band structures (2409.01523v1)
Abstract: We present a ML method for efficient computation of vibrational thermal expectation values of physical properties from first principles. Our approach is based on the non-perturbative frozen phonon formulation in which stochastic Monte Carlo algorithm is employed to sample configurations of nuclei in a supercell at finite temperatures based on a first-principles phonon model. A deep-learning neural network is trained to accurately predict physical properties associated with sampled phonon configurations, thus bypassing the time-consuming {\em ab initio} calculations. To incorporate the point-group symmetry of the electronic system into the ML model, group-theoretical methods are used to develop a symmetry-invariant descriptor for phonon configurations in the supercell. We apply our ML approach to compute the temperature dependent electronic energy gap of silicon based on density functional theory (DFT). We show that, with less than a hundred DFT calculations for training the neural network model, an order of magnitude larger number of sampling can be achieved for the computation of the vibrational thermal expectation values. Our work highlights the promising potential of ML techniques for finite temperature first-principles electronic structure methods.
- J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98, 146401 (2007).
- Z. Li, J. R. Kermode, and A. De Vita, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces, Phys. Rev. Lett. 114, 096405 (2015).
- J. Behler, Perspective: Machine learning potentials for atomistic simulations, The Journal of Chemical Physics 145, 170901 (2016).
- A. V. Shapeev, Moment tensor potentials: A class of systematically improvable interatomic potentials, Multiscale Modeling & Simulation 14, 1153 (2016).
- J. S. Smith, O. Isayev, and A. E. Roitberg, Ani-1: an extensible neural network potential with dft accuracy at force field computational cost, Chem. Sci. 8, 3192 (2017).
- V. L. Deringer, M. A. Caro, and G. Csanyi, Machine learning interatomic potentials as emerging tools for materials science, Advanced Materials 31, 1902765 (2019).
- R. Nagai, R. Akashi, and O. Sugino, Completing density functional theory by machine learning hidden messages from molecules, npj Computational Materials 6, 43 (2020).
- R. Pederson, B. Kalita, and K. Burke, Machine learning and density functional theory, Nature Reviews Physics 4, 357 (2022).
- F. Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89, 015003 (2017).
- F. Giustino, M. L. Cohen, and S. G. Louie, Electron-phonon interaction using wannier functions, Phys. Rev. B 76, 165108 (2007).
- M. Bernardi, First-principles dynamics of electrons and phonons, The European Physical Journal B 89, 239 (2016).
- H. Y. Fan, Temperature dependence of the energy gap in semiconductors, Phys. Rev. 82, 900 (1951).
- P. B. Allen and V. Heine, Theory of the temperature dependence of electronic band structures, Journal of Physics C: Solid State Physics 9, 2305 (1976).
- P. B. Allen and M. Cardona, Theory of the temperature dependence of the direct gap of germanium, Phys. Rev. B 23, 1495 (1981).
- M. Cardona and M. L. W. Thewalt, Isotope effects on the optical spectra of semiconductors, Rev. Mod. Phys. 77, 1173 (2005).
- F. Giustino, S. G. Louie, and M. L. Cohen, Electron-phonon renormalization of the direct band gap of diamond, Phys. Rev. Lett. 105, 265501 (2010).
- L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem, Phys. Rev. 139, A796 (1965).
- F. Aryasetiawan and O. Gunnarsson, The gw method, Reports on Progress in Physics 61, 237 (1998).
- G. Onida, L. Reining, and A. Rubio, Electronic excitations: density-functional versus many-body green’s-function approaches, Rev. Mod. Phys. 74, 601 (2002).
- M. T. Yin and M. L. Cohen, Microscopic theory of the phase transformation and lattice dynamics of si, Phys. Rev. Lett. 45, 1004 (1980).
- P. K. Lam and M. L. Cohen, Ab initio calculation of phonon frequencies of al, Phys. Rev. B 25, 6139 (1982).
- M. M. Dacorogna, M. L. Cohen, and P. K. Lam, Self-consistent calculation of the q𝑞qitalic_q dependence of the electron-phonon coupling in aluminum, Phys. Rev. Lett. 55, 837 (1985).
- A. Fleszar and R. Resta, Dielectric matrices in semiconductors: A direct approach, Phys. Rev. B 31, 5305 (1985).
- P. K. Lam, M. M. Dacorogna, and M. L. Cohen, Self-consistent calculation of electron-phonon couplings, Phys. Rev. B 34, 5065 (1986).
- B. Monserrat, Electron–phonon coupling from finite differences, Journal of Physics: Condensed Matter 30, 083001 (2018).
- J. H. Lloyd-Williams and B. Monserrat, Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells, Phys. Rev. B 92, 184301 (2015).
- C. E. Patrick and F. Giustino, Quantum nuclear dynamics in the photophysics of diamondoids, Nature Communications 4, 2006 (2013).
- M. Zacharias, C. E. Patrick, and F. Giustino, Stochastic approach to phonon-assisted optical absorption, Phys. Rev. Lett. 115, 177401 (2015).
- B. Monserrat, E. A. Engel, and R. J. Needs, Giant electron-phonon interactions in molecular crystals and the importance of nonquadratic coupling, Phys. Rev. B 92, 140302 (2015).
- B. J. Alder and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics 31, 459 (1959).
- R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471 (1985).
- D. Pan, Q. Wan, and G. Galli, The refractive index and electronic gap of water and ice increase with increasing pressure, Nature Communications 5, 3919 (2014).
- J. Cao and G. A. Voth, The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties, The Journal of Chemical Physics 100, 5093 (1994a).
- J. Cao and G. A. Voth, The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties, The Journal of Chemical Physics 100, 5106 (1994b).
- R. Ramírez, C. P. Herrero, and E. R. Hernández, Path-integral molecular dynamics simulation of diamond, Phys. Rev. B 73, 245202 (2006).
- B. Monserrat, Vibrational averages along thermal lines, Phys. Rev. B 93, 014302 (2016a).
- B. Monserrat, Correlation effects on electron-phonon coupling in semiconductors: Many-body theory along thermal lines, Phys. Rev. B 93, 100301 (2016b).
- M. Zacharias and F. Giustino, One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization, Phys. Rev. B 94, 075125 (2016).
- Z. Fan, J. Ding, and E. Ma, Machine learning bridges local static structure with multiple properties in metallic glasses, Materials Today 40, 48 (2020).
- P. Hundi and R. Shahsavari, Deep learning to speed up the development of structure–property relations for hexagonal boron nitride and graphene, Small 15, 1900656 (2019).
- F. E. Williams, Theoretical low temperature spectra of the thallium activated potassium chloride phosphor, Phys. Rev. 82, 281 (1951).
- M. Lax, The Franck‐Condon Principle and Its Application to Crystals, The Journal of Chemical Physics 20, 1752 (1952).
- S. Baroni, P. Giannozzi, and A. Testa, Green’s-function approach to linear response in solids, Phys. Rev. Lett. 58, 1861 (1987).
- X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, Phys. Rev. B 55, 10337 (1997).
- A. Kundu and G. Galli, Quantum vibronic effects on the excitation energies of the nitrogen-vacancy center in diamond, The Journal of Physical Chemistry Letters 15, 802 (2024).
- G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems 2, 303 (1989).
- K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2, 359 (1989).
- P. Zhang, P. Saha, and G.-W. Chern, Machine learning dynamics of phase separation in correlated electron magnets (2020b), arXiv:2006.04205 [cond-mat.str-el] .
- T. Xie and J. C. Grossman, Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties, Phys. Rev. Lett. 120, 145301 (2018).
- Z. Tian, S. Zhang, and G.-W. Chern, Machine learning for structure-property mapping of ising models: Scalability and limitations, Phys. Rev. E 108, 065304 (2023).
- J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network potentials, The Journal of Chemical Physics 134, 074106 (2011).
- A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Phys. Rev. B 87, 184115 (2013).
- R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B 99, 014104 (2019).
- H. Huo and M. Rupp, Unified representation of molecules and crystals for machine learning, Machine Learning: Science and Technology 3, 045017 (2022).
- P. Zhang, S. Zhang, and G.-W. Chern, Descriptors for machine learning model of generalized force field in condensed matter systems (2022a), arXiv:2201.00798 [cond-mat.str-el] .
- P. Zhang and G.-W. Chern, Arrested phase separation in double-exchange models: Large-scale simulation enabled by machine learning, Phys. Rev. Lett. 127, 146401 (2021).
- S. Zhang, P. Zhang, and G.-W. Chern, Anomalous phase separation in a correlated electron system: Machine-learning enabled large-scale kinetic monte carlo simulations, Proceedings of the National Academy of Sciences 119, e2119957119 (2022b).
- P. Zhang and G.-W. Chern, Machine learning nonequilibrium electron forces for spin dynamics of itinerant magnets, npj Computational Materials 9, 32 (2023).
- C. Cheng, S. Zhang, and G.-W. Chern, Machine learning for phase ordering dynamics of charge density waves, Phys. Rev. B 108, 014301 (2023).
- R. Kondor, A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum (2007), arXiv:cs/0701127 [cs.CV] .
- J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981).
- S. Wei and M. Y. Chou, Phonon dispersions of silicon and germanium from first-principles calculations, Phys. Rev. B 50, 2221 (1994).
- A. F. Agarap, Deep learning using rectified linear units (relu) (2019), arXiv:1803.08375 [cs.NE] .
- A. L. Maas, Rectifier nonlinearities improve neural network acoustic models (2013).
- D. Hendrycks and K. Gimpel, Gaussian error linear units (gelus) (2023), arXiv:1606.08415 [cs.LG] .
- M. Zacharias, M. Scheffler, and C. Carbogno, Fully anharmonic nonperturbative theory of vibronically renormalized electronic band structures, Phys. Rev. B 102, 045126 (2020).
- V. Alex, S. Finkbeiner, and J. Weber, Temperature dependence of the indirect energy gap in crystalline silicon, Journal of Applied Physics 79, 6943 (1996).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.