An Efficient Quantum Binary-Neuron Algorithm for Accurate Multi-Story Floor Localization (2409.00792v1)
Abstract: Accurate floor localization in a multi-story environment is an important but challenging task. Among the current floor localization techniques, fingerprinting is the mainstream technology due to its accuracy in noisy environments. To achieve accurate floor localization in a building with many floors, we have to collect sufficient data on each floor, which needs significant storage and running time; preventing fingerprinting techniques from scaling to support large multi-story buildings, especially on a worldwide scale. In this paper, we propose a quantum algorithm for accurate multi-story localization. The proposed algorithm leverages quantum computing concepts to provide an exponential enhancement in both space and running time compared to the classical counterparts. In addition, it builds on an efficient binary-neuron implementation that can be implemented using fewer qubits compared to the typical non-binary neurons, allowing for easier deployment with near-term quantum devices. We implement the proposed algorithm on a real IBM quantum machine and evaluate it on three real indoor testbeds. Results confirm the exponential saving in both time and space for the proposed quantum algorithm, while keeping the same localization accuracy compared to the traditional classical techniques, and using half the number of qubits required for other quantum localization algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.