Papers
Topics
Authors
Recent
2000 character limit reached

A classification of finite groups with small Davenport constant

Published 31 Aug 2024 in math.GR and math.AC | (2409.00363v2)

Abstract: Let $G$ be a finite group. By a sequence over $G$, we mean a finite unordered string of terms from $G$ with repetition allowed, and we say that it is a product-one sequence if its terms can be ordered so that their product is the identity element of $G$. Then, the Davenport constant $\mathsf D (G)$ is the maximal length of a minimal product-one sequence, that is a product-one sequence which cannot be factored into two non-trivial product-one subsequences. The Davenport constant is a combinatorial group invariant that has been studied fruitfully over several decades in additive combinatorics, invariant theory, and factorization theory, etc. Apart from a few cases of finite groups, the precise value of the Davenport constant is unknown. Even in the abelian case, little is known beyond groups of rank at most two. On the other hand, for a fixed positive integer $r$, structural results characterizing which groups $G$ satisfy $\mathsf D (G) = r$ are rare. We only know that there are finitely many such groups. In this paper, we study the classification of finite groups based on the Davenport constant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.