Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does Alignment Tuning Really Break LLMs' Internal Confidence? (2409.00352v1)

Published 31 Aug 2024 in cs.CL and cs.LG

Abstract: LLMs have shown remarkable progress, but their real-world application necessitates reliable calibration. This study conducts a comprehensive analysis of calibration degradation of LLMs across four dimensions: models, calibration metrics, tasks, and confidence extraction methods. Initial analysis showed that the relationship between alignment and calibration is not always a trade-off, but under stricter analysis conditions, we found the alignment process consistently harms calibration. This highlights the need for (1) a careful approach when measuring model confidences and calibration errors and (2) future research into algorithms that can help LLMs to achieve both instruction-following and calibration without sacrificing either.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hongseok Oh (7 papers)
  2. Wonseok Hwang (24 papers)