Papers
Topics
Authors
Recent
Search
2000 character limit reached

An exponential map free implicit midpoint method for stochastic Lie-Poisson systems

Published 29 Aug 2024 in math.NA and cs.NA | (2408.16701v1)

Abstract: An integrator for a class of stochastic Lie-Poisson systems driven by Stratonovich noise is developed. The integrator is suited for Lie-Poisson systems that also admit an isospectral formulation, which enables scalability to high-dimensional systems. Its derivation follows from discrete Lie-Poisson reduction of the symplectic midpoint scheme for stochastic Hamiltonian systems. We prove almost sure preservation of Casimir functions and coadjoint orbits under the numerical flow and provide strong and weak convergence rates of the proposed method. The scalability, structure-conservation, and convergence rates are illustrated numerically for the (generalized) rigid body, point vortex dynamics, and the two-dimensional Euler equations on the sphere.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.