Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Estimating Dynamic Flow Features in Groups of Tracked Objects (2408.16190v1)

Published 29 Aug 2024 in cs.CV and physics.flu-dyn

Abstract: Interpreting motion captured in image sequences is crucial for a wide range of computer vision applications. Typical estimation approaches include optical flow (OF), which approximates the apparent motion instantaneously in a scene, and multiple object tracking (MOT), which tracks the motion of subjects over time. Often, the motion of objects in a scene is governed by some underlying dynamical system which could be inferred by analyzing the motion of groups of objects. Standard motion analyses, however, are not designed to intuit flow dynamics from trajectory data, making such measurements difficult in practice. The goal of this work is to extend gradient-based dynamical systems analyses to real-world applications characterized by complex, feature-rich image sequences with imperfect tracers. The tracer trajectories are tracked using deep vision networks and gradients are approximated using Lagrangian gradient regression (LGR), a tool designed to estimate spatial gradients from sparse data. From gradients, dynamical features such as regions of coherent rotation and transport barriers are identified. The proposed approach is affordably implemented and enables advanced studies including the motion analysis of two distinct object classes in a single image sequence. Two examples of the method are presented on data sets for which standard gradient-based analyses do not apply.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.