Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Template Tracking and Recognition (1204.4476v1)

Published 19 Apr 2012 in cs.CV and cs.SY

Abstract: In this paper we address the problem of tracking non-rigid objects whose local appearance and motion changes as a function of time. This class of objects includes dynamic textures such as steam, fire, smoke, water, etc., as well as articulated objects such as humans performing various actions. We model the temporal evolution of the object's appearance/motion using a Linear Dynamical System (LDS). We learn such models from sample videos and use them as dynamic templates for tracking objects in novel videos. We pose the problem of tracking a dynamic non-rigid object in the current frame as a maximum a-posteriori estimate of the location of the object and the latent state of the dynamical system, given the current image features and the best estimate of the state in the previous frame. The advantage of our approach is that we can specify a-priori the type of texture to be tracked in the scene by using previously trained models for the dynamics of these textures. Our framework naturally generalizes common tracking methods such as SSD and kernel-based tracking from static templates to dynamic templates. We test our algorithm on synthetic as well as real examples of dynamic textures and show that our simple dynamics-based trackers perform at par if not better than the state-of-the-art. Since our approach is general and applicable to any image feature, we also apply it to the problem of human action tracking and build action-specific optical flow trackers that perform better than the state-of-the-art when tracking a human performing a particular action. Finally, since our approach is generative, we can use a-priori trained trackers for different texture or action classes to simultaneously track and recognize the texture or action in the video.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rizwan Chaudhry (1 paper)
  2. Gregory Hager (13 papers)
  3. René Vidal (154 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.