Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

$C_2$-Equivariant Orthogonal Calculus (2408.15891v1)

Published 28 Aug 2024 in math.AT

Abstract: In this thesis, we construct a new version of orthogonal calculus for functors $F$ from $C_2$-representations to $C_2$-spaces, where $C_2$ is the cyclic group of order 2. For example, the functor $BO(-)$, which sends a $C_2$-representation $V$ to the classifying space of its orthogonal group $BO(V)$. We obtain a bigraded sequence of approximations to $F$, called the strongly $(p,q)$-polynomial approximations $T_{p,q}F$. The bigrading arises from the bigrading on $C_2$-representations. The homotopy fibre $D_{p,q}F$ of the map from $T_{p+1,q}T_{p,q+1}F$ to $T_{p,q}F$ is such that the approximation $T_{p+1,q}T_{p,q+1}D_{p,q}F$ is equivalent to the functor $D_{p,q}F$ itself and the approximation $T_{p,q}D_{p,q}F$ is trivial. A functor with these properties is called $(p,q)$-homogeneous. Via a zig-zag of Quillen equivalences, we prove that $(p,q)$-homogeneous functors are fully determined by orthogonal spectra with a genuine action of $C_2$ and a naive action of the orthogonal group $O(p,q)$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.