Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fast numerical solvers for parameter identification problems in mathematical biology (2408.14926v1)

Published 27 Aug 2024 in math.NA, cs.NA, and math.OC

Abstract: In this paper, we consider effective discretization strategies and iterative solvers for nonlinear PDE-constrained optimization models for pattern evolution within biological processes. Upon a Sequential Quadratic Programming linearization of the optimization problem, we devise appropriate time-stepping schemes and discrete approximations of the cost functionals such that the discretization and optimization operations are commutative, a highly desirable property of a discretization of such problems. We formulate the large-scale, coupled linear systems in such a way that efficient preconditioned iterative methods can be applied within a Krylov subspace solver. Numerical experiments demonstrate the viability and efficiency of our approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: