Fast numerical solvers for parameter identification problems in mathematical biology (2408.14926v1)
Abstract: In this paper, we consider effective discretization strategies and iterative solvers for nonlinear PDE-constrained optimization models for pattern evolution within biological processes. Upon a Sequential Quadratic Programming linearization of the optimization problem, we devise appropriate time-stepping schemes and discrete approximations of the cost functionals such that the discretization and optimization operations are commutative, a highly desirable property of a discretization of such problems. We formulate the large-scale, coupled linear systems in such a way that efficient preconditioned iterative methods can be applied within a Krylov subspace solver. Numerical experiments demonstrate the viability and efficiency of our approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.