Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Data-driven Modeling of Combined Sewer Systems for Urban Sustainability: An Empirical Evaluation (2408.11619v3)

Published 21 Aug 2024 in eess.SY, cs.AI, cs.LG, and cs.SY

Abstract: Climate change poses complex challenges, with extreme weather events becoming increasingly frequent and difficult to model. Examples include the dynamics of Combined Sewer Systems (CSS). Overburdened CSS during heavy rainfall will overflow untreated wastewater into surface water bodies. Classical approaches to modeling the impact of extreme rainfall events rely on physical simulations, which are particularly challenging to create for large urban infrastructures. Deep Learning (DL) models offer a cost-effective alternative for modeling the complex dynamics of sewer systems. In this study, we present a comprehensive empirical evaluation of several state-of-the-art DL time series models for predicting sewer system dynamics in a large urban infrastructure, utilizing three years of measurement data. We especially investigate the potential of DL models to maintain predictive precision during network outages by comparing global models, which have access to all variables within the sewer system, and local models, which are limited to data from a restricted set of local sensors. Our findings demonstrate that DL models can accurately predict the dynamics of sewer system load, even under network outage conditions. These results suggest that DL models can effectively aid in balancing the load redistribution in CSS, thereby enhancing the sustainability and resilience of urban infrastructures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.