Papers
Topics
Authors
Recent
2000 character limit reached

First return times on sparse random graphs (2408.10530v2)

Published 20 Aug 2024 in cond-mat.dis-nn, cond-mat.stat-mech, math-ph, math.MP, and math.PR

Abstract: We consider random walks in the form of nearest-neighbor hopping on Erdos-Renyi random graphs of finite fixed mean degree c as the number of vertices N tends to infinity. In this regime, using statistical field theory methods, we develop an analytic theory of the first return time probability distribution. The problem turns out closely related to finding the spectrum of the normalized graph Laplacian that controls the continuum time version of the nearest-neighbor-hopping random walk. In the infinite graph limit, where loops are highly improbable, the returns operate in a manner qualitatively similar to c-regular trees, and the expressions for probabilities resemble those on random c-regular graphs. Because the vertex degrees are not exactly constant, however, the way c enters the formulas differs from the dependence on the graph degree of first return probabilities on random regular graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.