Papers
Topics
Authors
Recent
Search
2000 character limit reached

Kolmogorov Arnold Networks in Fraud Detection: Bridging the Gap Between Theory and Practice

Published 15 Aug 2024 in cs.LG and cs.NE | (2408.10263v2)

Abstract: This study evaluates the applicability of Kolmogorov-Arnold Networks (KAN) in fraud detection, finding that their effectiveness is context-dependent. We propose a quick decision rule using Principal Component Analysis (PCA) to assess the suitability of KAN: if data can be effectively separated in two dimensions using splines, KAN may outperform traditional models; otherwise, other methods could be more appropriate. We also introduce a heuristic approach to hyperparameter tuning, significantly reducing computational costs. These findings suggest that while KAN has potential, its use should be guided by data-specific assessments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.