Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

A Unified Framework for Interpretable Transformers Using PDEs and Information Theory (2408.09523v1)

Published 18 Aug 2024 in cs.LG, cs.AI, cs.IT, and math.IT

Abstract: This paper presents a novel unified theoretical framework for understanding Transformer architectures by integrating Partial Differential Equations (PDEs), Neural Information Flow Theory, and Information Bottleneck Theory. We model Transformer information dynamics as a continuous PDE process, encompassing diffusion, self-attention, and nonlinear residual components. Our comprehensive experiments across image and text modalities demonstrate that the PDE model effectively captures key aspects of Transformer behavior, achieving high similarity (cosine similarity > 0.98) with Transformer attention distributions across all layers. While the model excels in replicating general information flow patterns, it shows limitations in fully capturing complex, non-linear transformations. This work provides crucial theoretical insights into Transformer mechanisms, offering a foundation for future optimizations in deep learning architectural design. We discuss the implications of our findings, potential applications in model interpretability and efficiency, and outline directions for enhancing PDE models to better mimic the intricate behaviors observed in Transformers, paving the way for more transparent and optimized AI systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)