Physics Informed Token Transformer for Solving Partial Differential Equations (2305.08757v3)
Abstract: Solving Partial Differential Equations (PDEs) is the core of many fields of science and engineering. While classical approaches are often prohibitively slow, machine learning models often fail to incorporate complete system information. Over the past few years, transformers have had a significant impact on the field of Artificial Intelligence and have seen increased usage in PDE applications. However, despite their success, transformers currently lack integration with physics and reasoning. This study aims to address this issue by introducing PITT: Physics Informed Token Transformer. The purpose of PITT is to incorporate the knowledge of physics by embedding partial differential equations (PDEs) into the learning process. PITT uses an equation tokenization method to learn an analytically-driven numerical update operator. By tokenizing PDEs and embedding partial derivatives, the transformer models become aware of the underlying knowledge behind physical processes. To demonstrate this, PITT is tested on challenging 1D and 2D PDE neural operator prediction tasks. The results show that PITT outperforms popular neural operator models and has the ability to extract physically relevant information from governing equations.
- Yang, J.; Dzanic, T.; Petersen, B.; Kudo, J.; Mittal, K.; Tomov, V.; Camier, J.-S.; Zhao, T.; Zha, H.; Kolev, T.; Anderson, R.; Faissol, D. Reinforcement Learning for Adaptive Mesh Refinement. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. 2023; pp 5997–6014
- Foucart, C.; Charous, A.; Lermusiaux, P. F. Deep Reinforcement Learning for Adaptive Mesh Refinement. arXiv preprint arXiv:2209.12351 2022,
- Wu, T.; Maruyama, T.; Zhao, Q.; Wetzstein, G.; Leskovec, J. Learning Controllable Adaptive Simulation for Multi-resolution Physics. The Eleventh International Conference on Learning Representations. 2023
- Li, Z.; Kovachki, N. B.; Azizzadenesheli, K.; liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier Neural Operator for Parametric Partial Differential Equations. International Conference on Learning Representations. 2021
- Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs. 97
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. 2016
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. Advances in Neural Information Processing Systems. 2017
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019
- Brown, T. B. et al. Language Models are Few-Shot Learners. 2020
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; Uszkoreit, J.; Houlsby, N. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2021
- Cao, S. Choose a Transformer: Fourier or Galerkin. Advances in Neural Information Processing Systems. 2021; pp 24924–24940
- Li, Z.; Meidani, K.; Farimani, A. B. Transformer for Partial Differential Equations’ Operator Learning. 2022
- Hao, Z.; Ying, C.; Wang, Z.; Su, H.; Dong, Y.; Liu, S.; Cheng, Z.; Zhu, J.; Song, J. GNOT: A General Neural Operator Transformer for Operator Learning. 2023
- Han, X.; Gao, H.; Pffaf, T.; Wang, J.-X.; Liu, L.-P. Predicting Physics in Mesh-reduced Space with Temporal Attention. 2022; https://arxiv.org/abs/2201.09113
- Ovadia, O.; Kahana, A.; Stinis, P.; Turkel, E.; Karniadakis, G. E. ViTO: Vision Transformer-Operator. 2023
- Guo, R.; Cao, S.; Chen, L. Transformer Meets Boundary Value Inverse Problems. 2023
- Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural Operator: Learning Maps Between Function Spaces. 2022
- Su, J.; Lu, Y.; Pan, S.; Murtadha, A.; Wen, B.; Liu, Y. RoFormer: Enhanced Transformer with Rotary Position Embedding. 2022
- Kissas, G.; Seidman, J.; Guilhoto, L. F.; Preciado, V. M.; Pappas, G. J.; Perdikaris, P. Learning Operators with Coupled Attention. 2022
- Wang, R.; Walters, R.; Yu, R. Meta-Learning Dynamics Forecasting Using Task Inference. 2022
- Takamoto, M.; Alesiani, F.; Niepert, M. CAPE: Channel-Attention-Based PDE Parameter Embeddings for SciML. 2023; https://openreview.net/forum?id=22z1JIM6mwI
- Krishnapriyan, A.; Gholami, A.; Zhe, S.; Kirby, R.; Mahoney, M. W. Characterizing possible failure modes in physics-informed neural networks. Advances in Neural Information Processing Systems. 2021
- Lample, G.; Charton, F. Deep Learning for Symbolic Mathematics. 2020
- Takamoto, M.; Praditia, T.; Leiteritz, R.; MacKinlay, D.; Alesiani, F.; Pflüger, D.; Niepert, M. PDEBench: An Extensive Benchmark for Scientific Machine Learning. Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track. 2022
- Brandstetter, J.; Worrall, D. E.; Welling, M. Message Passing Neural PDE Solvers. International Conference on Learning Representations. 2022