Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics Informed Token Transformer for Solving Partial Differential Equations (2305.08757v3)

Published 15 May 2023 in cs.LG and physics.comp-ph

Abstract: Solving Partial Differential Equations (PDEs) is the core of many fields of science and engineering. While classical approaches are often prohibitively slow, machine learning models often fail to incorporate complete system information. Over the past few years, transformers have had a significant impact on the field of Artificial Intelligence and have seen increased usage in PDE applications. However, despite their success, transformers currently lack integration with physics and reasoning. This study aims to address this issue by introducing PITT: Physics Informed Token Transformer. The purpose of PITT is to incorporate the knowledge of physics by embedding partial differential equations (PDEs) into the learning process. PITT uses an equation tokenization method to learn an analytically-driven numerical update operator. By tokenizing PDEs and embedding partial derivatives, the transformer models become aware of the underlying knowledge behind physical processes. To demonstrate this, PITT is tested on challenging 1D and 2D PDE neural operator prediction tasks. The results show that PITT outperforms popular neural operator models and has the ability to extract physically relevant information from governing equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Yang, J.; Dzanic, T.; Petersen, B.; Kudo, J.; Mittal, K.; Tomov, V.; Camier, J.-S.; Zhao, T.; Zha, H.; Kolev, T.; Anderson, R.; Faissol, D. Reinforcement Learning for Adaptive Mesh Refinement. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. 2023; pp 5997–6014
  2. Foucart, C.; Charous, A.; Lermusiaux, P. F. Deep Reinforcement Learning for Adaptive Mesh Refinement. arXiv preprint arXiv:2209.12351 2022,
  3. Wu, T.; Maruyama, T.; Zhao, Q.; Wetzstein, G.; Leskovec, J. Learning Controllable Adaptive Simulation for Multi-resolution Physics. The Eleventh International Conference on Learning Representations. 2023
  4. Li, Z.; Kovachki, N. B.; Azizzadenesheli, K.; liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier Neural Operator for Parametric Partial Differential Equations. International Conference on Learning Representations. 2021
  5. Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs. 97
  6. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. 2016
  7. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. Advances in Neural Information Processing Systems. 2017
  8. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019
  9. Brown, T. B. et al. Language Models are Few-Shot Learners. 2020
  10. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; Uszkoreit, J.; Houlsby, N. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2021
  11. Cao, S. Choose a Transformer: Fourier or Galerkin. Advances in Neural Information Processing Systems. 2021; pp 24924–24940
  12. Li, Z.; Meidani, K.; Farimani, A. B. Transformer for Partial Differential Equations’ Operator Learning. 2022
  13. Hao, Z.; Ying, C.; Wang, Z.; Su, H.; Dong, Y.; Liu, S.; Cheng, Z.; Zhu, J.; Song, J. GNOT: A General Neural Operator Transformer for Operator Learning. 2023
  14. Han, X.; Gao, H.; Pffaf, T.; Wang, J.-X.; Liu, L.-P. Predicting Physics in Mesh-reduced Space with Temporal Attention. 2022; https://arxiv.org/abs/2201.09113
  15. Ovadia, O.; Kahana, A.; Stinis, P.; Turkel, E.; Karniadakis, G. E. ViTO: Vision Transformer-Operator. 2023
  16. Guo, R.; Cao, S.; Chen, L. Transformer Meets Boundary Value Inverse Problems. 2023
  17. Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural Operator: Learning Maps Between Function Spaces. 2022
  18. Su, J.; Lu, Y.; Pan, S.; Murtadha, A.; Wen, B.; Liu, Y. RoFormer: Enhanced Transformer with Rotary Position Embedding. 2022
  19. Kissas, G.; Seidman, J.; Guilhoto, L. F.; Preciado, V. M.; Pappas, G. J.; Perdikaris, P. Learning Operators with Coupled Attention. 2022
  20. Wang, R.; Walters, R.; Yu, R. Meta-Learning Dynamics Forecasting Using Task Inference. 2022
  21. Takamoto, M.; Alesiani, F.; Niepert, M. CAPE: Channel-Attention-Based PDE Parameter Embeddings for SciML. 2023; https://openreview.net/forum?id=22z1JIM6mwI
  22. Krishnapriyan, A.; Gholami, A.; Zhe, S.; Kirby, R.; Mahoney, M. W. Characterizing possible failure modes in physics-informed neural networks. Advances in Neural Information Processing Systems. 2021
  23. Lample, G.; Charton, F. Deep Learning for Symbolic Mathematics. 2020
  24. Takamoto, M.; Praditia, T.; Leiteritz, R.; MacKinlay, D.; Alesiani, F.; Pflüger, D.; Niepert, M. PDEBench: An Extensive Benchmark for Scientific Machine Learning. Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track. 2022
  25. Brandstetter, J.; Worrall, D. E.; Welling, M. Message Passing Neural PDE Solvers. International Conference on Learning Representations. 2022
Citations (11)

Summary

We haven't generated a summary for this paper yet.