Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Modal Fusion by Alignment and Label Matching for Multimodal Emotion Recognition

Published 18 Aug 2024 in cs.MM, cs.AI, cs.CV, and cs.SD | (2408.09438v1)

Abstract: To address the limitation in multimodal emotion recognition (MER) performance arising from inter-modal information fusion, we propose a novel MER framework based on multitask learning where fusion occurs after alignment, called Foal-Net. The framework is designed to enhance the effectiveness of modality fusion and includes two auxiliary tasks: audio-video emotion alignment (AVEL) and cross-modal emotion label matching (MEM). First, AVEL achieves alignment of emotional information in audio-video representations through contrastive learning. Then, a modal fusion network integrates the aligned features. Meanwhile, MEM assesses whether the emotions of the current sample pair are the same, providing assistance for modal information fusion and guiding the model to focus more on emotional information. The experimental results conducted on IEMOCAP corpus show that Foal-Net outperforms the state-of-the-art methods and emotion alignment is necessary before modal fusion.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.