Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Deep Neural Network Framework for Solving Forward and Inverse Problems in Delay Differential Equations

Published 17 Aug 2024 in cs.LG | (2408.09202v2)

Abstract: We propose a unified framework for delay differential equations (DDEs) based on deep neural networks (DNNs) - the neural delay differential equations (NDDEs), aimed at solving the forward and inverse problems of delay differential equations. This framework could embed delay differential equations into neural networks to accommodate the diverse requirements of DDEs in terms of initial conditions, control equations, and known data. NDDEs adjust the network parameters through automatic differentiation and optimization algorithms to minimize the loss function, thereby obtaining numerical solutions to the delay differential equations without the grid dependence and polynomial interpolation typical of traditional numerical methods. In addressing inverse problems, the NDDE framework can utilize observational data to perform precise estimation of single or multiple delay parameters, which is very important in practical mathematical modeling. The results of multiple numerical experiments have shown that NDDEs demonstrate high precision in both forward and inverse problems, proving their effectiveness and promising potential in dealing with delayed differential equation issues.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.