Papers
Topics
Authors
Recent
2000 character limit reached

Measuring Agreeableness Bias in Multimodal Models

Published 17 Aug 2024 in cs.AI, cs.CL, cs.CV, and cs.HC | (2408.09111v2)

Abstract: This paper examines a phenomenon in multimodal LLMs where pre-marked options in question images can significantly influence model responses. Our study employs a systematic methodology to investigate this effect: we present models with images of multiple-choice questions, which they initially answer correctly, then expose the same model to versions with pre-marked options. Our findings reveal a significant shift in the models' responses towards the pre-marked option, even when it contradicts their answers in the neutral settings. Comprehensive evaluations demonstrate that this agreeableness bias is a consistent and quantifiable behavior across various model architectures. These results show potential limitations in the reliability of these models when processing images with pre-marked options, raising important questions about their application in critical decision-making contexts where such visual cues might be present.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.