Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uniform ergodic theorems for semigroup representations (2408.08961v1)

Published 16 Aug 2024 in math.FA and math.SP

Abstract: We consider a bounded representation $T$ of a commutative semigroup $S$ on a Banach space and analyse the relation between three concepts: (i) properties of the unitary spectrum of $T$, which is defined in terms of semigroup characters on $S$; (ii) uniform mean ergodic properties of $T$; and (iii) quasi-compactness of $T$. We use our results to generalize the celebrated Niiro-Sawashima theorem to semigroup representations and, as a consequence, obtain the following: if a positive and bounded semigroup representation on a Banach lattice is uniformly mean ergodic and has finite-dimensional fixed space, then it is quasi-compact.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.