Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Photonic KAN: a Kolmogorov-Arnold network inspired efficient photonic neuromorphic architecture (2408.08407v1)

Published 15 Aug 2024 in physics.optics and cs.ET

Abstract: Kolmogorov-Arnold Networks (KAN) models were recently proposed and claimed to provide improved parameter scaling and interpretability compared to conventional multilayer perceptron (MLP) models. Inspired by the KAN architecture, we propose the Photonic KAN -- an integrated all-optical neuromorphic platform leveraging highly parametric optical nonlinear transfer functions along KAN edges. In this work, we implement such nonlinearities in the form of cascaded ring-assisted Mach-Zehnder Interferometer (MZI) devices. This innovative design has the potential to address key limitations of current photonic neural networks. In our test cases, the Photonic KAN showcases enhanced parameter scaling and interpretability compared to existing photonic neural networks. The photonic KAN achieves approximately 65$\times$ reduction in energy consumption and area, alongside a 50$\times$ reduction in latency compared to previous MZI-based photonic accelerators with similar performance for function fitting task. This breakthrough presents a promising new avenue for expanding the scalability and efficiency of neuromorphic hardware platforms.

Summary

We haven't generated a summary for this paper yet.