Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gaussian mixture Taylor approximations of risk measures constrained by PDEs with Gaussian random field inputs (2408.06615v1)

Published 13 Aug 2024 in math.NA, cs.NA, and stat.CO

Abstract: This work considers the computation of risk measures for quantities of interest governed by PDEs with Gaussian random field parameters using Taylor approximations. While efficient, Taylor approximations are local to the point of expansion, and hence may degrade in accuracy when the variances of the input parameters are large. To address this challenge, we approximate the underlying Gaussian measure by a mixture of Gaussians with reduced variance in a dominant direction of parameter space. Taylor approximations are constructed at the means of each Gaussian mixture component, which are then combined to approximate the risk measures. The formulation is presented in the setting of infinite-dimensional Gaussian random parameters for risk measures including the mean, variance, and conditional value-at-risk. We also provide detailed analysis of the approximations errors arising from two sources: the Gaussian mixture approximation and the Taylor approximations. Numerical experiments are conducted for a semilinear advection-diffusion-reaction equation with a random diffusion coefficient field and for the Helmholtz equation with a random wave speed field. For these examples, the proposed approximation strategy can achieve less than $1\%$ relative error in estimating CVaR with only $\mathcal{O}(10)$ state PDE solves, which is comparable to a standard Monte Carlo estimate with $\mathcal{O}(104)$ samples, thus achieving significant reduction in computational cost. The proposed method can therefore serve as a way to rapidly and accurately estimate risk measures under limited computational budgets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: