Operator means, barycenters, and fixed point equations
Abstract: The seminal work of Kubo and Ando from 1980 provided us with an axiomatic approach to means of positive operators. As most of their axioms are algebraic in nature, this approach has a clear algebraic flavor. On the other hand, it is highly natural to take the geometric viewpoint and consider a distance (understood in a broad sense) on the cone of positive operators, and define the mean of positive operators by an appropriate notion of the center of mass. This strategy often leads to a fixed point equation that characterizes the mean. The aim of this survey is to highlight those cases where the algebraic and the geometric approaches meet each other.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.