Enhancing Representation Learning of EEG Data with Masked Autoencoders
Abstract: Self-supervised learning has been a powerful training paradigm to facilitate representation learning. In this study, we design a masked autoencoder (MAE) to guide deep learning models to learn electroencephalography (EEG) signal representation. Our MAE includes an encoder and a decoder. A certain proportion of input EEG signals are randomly masked and sent to our MAE. The goal is to recover these masked signals. After this self-supervised pre-training, the encoder is fine-tuned on downstream tasks. We evaluate our MAE on EEGEyeNet gaze estimation task. We find that the MAE is an effective brain signal learner. It also significantly improves learning efficiency. Compared to the model without MAE pre-training, the pre-trained one achieves equal performance with 1/3 the time of training and outperforms it in half the training time. Our study shows that self-supervised learning is a promising research direction for EEG-based applications as other fields (natural language processing, computer vision, robotics, etc.), and thus we expect foundation models to be successful in EEG domain.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.