Papers
Topics
Authors
Recent
2000 character limit reached

Odd Covers of Complete Graphs and Hypergraphs (2408.05053v1)

Published 9 Aug 2024 in math.CO

Abstract: The `odd cover number' of a complete graph is the smallest size of a family of complete bipartite graphs that covers each edge an odd number of times. For $n$ odd, Buchanan, Clifton, Culver, Nie, O'Neill, Rombach and Yin showed that the odd cover number of $K_n$ is equal to $(n+1)/2$ or $(n+3)/2$, and they conjectured that it is always $(n+1)/2$. We prove this conjecture. For $n$ even, Babai and Frankl showed that the odd cover number of $K_n$ is always at least $n/2$, and the above authors and Radhakrishnan, Sen and Vishwanathan gave some values of $n$ for which equality holds. We give some new examples. Our constructions arise from some very symmetric constructions for the corresponding problem for complete hypergraphs. Thus the odd cover number of the complete 3-graph $K_n{(3)}$ is the smallest number of complete 3-partite 3-graphs such that each 3-set is in an odd number of them. We show that the odd cover number of $K_n{(3)}$ is exactly $n/2$ for even $n$, and we show that for odd $n$ it is $(n-1)/2$ for infinitely many values of $n$. We also show that for $r=3$ and $r=4$ the odd cover number of $K_n{(r)}$ is strictly less than the partition number, answering a question of Buchanan, Clifton, Culver, Nie, O'Neill, Rombach and Yin for those values of $r$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.