Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep joint source-channel coding for wireless point cloud transmission

Published 9 Aug 2024 in cs.MM | (2408.04889v1)

Abstract: The growing demand for high-quality point cloud transmission over wireless networks presents significant challenges, primarily due to the large data sizes and the need for efficient encoding techniques. In response to these challenges, we introduce a novel system named Deep Point Cloud Semantic Transmission (PCST), designed for end-to-end wireless point cloud transmission. Our approach employs a progressive resampling framework using sparse convolution to project point cloud data into a semantic latent space. These semantic features are subsequently encoded through a deep joint source-channel (JSCC) encoder, generating the channel-input sequence. To enhance transmission efficiency, we use an adaptive entropy-based approach to assess the importance of each semantic feature, allowing transmission lengths to vary according to their predicted entropy. PCST is robust across diverse Signal-to-Noise Ratio (SNR) levels and supports an adjustable rate-distortion (RD) trade-off, ensuring flexible and efficient transmission. Experimental results indicate that PCST significantly outperforms traditional separate source-channel coding (SSCC) schemes, delivering superior reconstruction quality while achieving over a 50% reduction in bandwidth usage.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.