Papers
Topics
Authors
Recent
2000 character limit reached

Machine learning supported annealing for prediction of grand canonical crystal structures

Published 7 Aug 2024 in cond-mat.mtrl-sci and physics.comp-ph | (2408.03556v1)

Abstract: This study investigates the application of Factorization Machines with Quantum Annealing (FMQA) to address the crystal structure problem (CSP) in materials science. FMQA is a black-box optimization algorithm that combines machine learning with annealing machines to find samples to a black-box function that minimize a given loss. The CSP involves determining the optimal arrangement of atoms in a material based on its chemical composition, a critical challenge in materials science. We explore FMQA's ability to efficiently sample optimal crystal configurations by setting the loss function to the energy of the crystal configuration as given by a predefined interatomic potential. Further we investigate how well the energies of the various metastable configurations, or local minima of the potential, are learned by the algorithm. Our investigation reveals FMQA's potential in quick ground state sampling and in recovering relational order between local minima.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.