Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Minimum Enclosing Ball Synthetic Minority Oversampling Technique from a Geometric Perspective (2408.03526v1)

Published 7 Aug 2024 in cs.LG and cs.CG

Abstract: Class imbalance refers to the significant difference in the number of samples from different classes within a dataset, making it challenging to identify minority class samples correctly. This issue is prevalent in real-world classification tasks, such as software defect prediction, medical diagnosis, and fraud detection. The synthetic minority oversampling technique (SMOTE) is widely used to address class imbalance issue, which is based on interpolation between randomly selected minority class samples and their neighbors. However, traditional SMOTE and most of its variants only interpolate between existing samples, which may be affected by noise samples in some cases and synthesize samples that lack diversity. To overcome these shortcomings, this paper proposes the Minimum Enclosing Ball SMOTE (MEB-SMOTE) method from a geometry perspective. Specifically, MEB is innovatively introduced into the oversampling method to construct a representative point. Then, high-quality samples are synthesized by interpolation between this representative point and the existing samples. The rationale behind constructing a representative point is discussed, demonstrating that the center of MEB is more suitable as the representative point. To exhibit the superiority of MEB-SMOTE, experiments are conducted on 15 real-world imbalanced datasets. The results indicate that MEB-SMOTE can effectively improve the classification performance on imbalanced datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube