Papers
Topics
Authors
Recent
2000 character limit reached

Spectral statistics of the Laplacian on random covers of a closed negatively curved surface

Published 5 Aug 2024 in math.SP, math-ph, math.DS, math.MP, and math.PR | (2408.02808v1)

Abstract: Let $(X,g)$ be a closed, connected surface, with variable negative curvature. We consider the distribution of eigenvalues of the Laplacian on random covers $X_n\to X$ of degree $n$. We focus on the ensemble variance of the smoothed number of eigenvalues of the square root of the positive Laplacian $\sqrt{\Delta}$ in windows $[\lambda-\frac 1L,\lambda+\frac 1L]$, over the set of $n$-sheeted covers of $X$. We first take the limit of large degree $n\to +\infty$, then we let the energy $\lambda$ go to $+\infty$ while the window size $\frac 1L$ goes to $0$. In this ad hoc limit, local energy averages of the variance converge to an expression corresponding to the variance of the same statistic when considering instead spectra of large random matrices of the Gaussian Orthogonal Ensemble (GOE). By twisting the Laplacian with unitary representations, we are able to observe different statistics, corresponding to the Gaussian Unitary Ensemble (GUE) when time reversal symmetry is broken. These results were shown by F. Naud for the model of random covers of a hyperbolic surface. For an individual cover $X_n\to X$, we consider spectral fluctuations of the counting function on $X_n$ around the ensemble average. In the large energy regime, for a typical cover $X_n\to X$ of large degree, these fluctuations are shown to approach the GOE result, a phenomenon called ergodicity in Random Matrix Theory. An analogous result for random covers of hyperbolic surfaces was obtained by Y. Maoz.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We're still in the process of identifying open problems mentioned in this paper. Please check back in a few minutes.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.