Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Explain via Any Concept: Concept Bottleneck Model with Open Vocabulary Concepts (2408.02265v1)

Published 5 Aug 2024 in cs.CV

Abstract: The concept bottleneck model (CBM) is an interpretable-by-design framework that makes decisions by first predicting a set of interpretable concepts, and then predicting the class label based on the given concepts. Existing CBMs are trained with a fixed set of concepts (concepts are either annotated by the dataset or queried from LLMs). However, this closed-world assumption is unrealistic in practice, as users may wonder about the role of any desired concept in decision-making after the model is deployed. Inspired by the large success of recent vision-language pre-trained models such as CLIP in zero-shot classification, we propose "OpenCBM" to equip the CBM with open vocabulary concepts via: (1) Aligning the feature space of a trainable image feature extractor with that of a CLIP's image encoder via a prototype based feature alignment; (2) Simultaneously training an image classifier on the downstream dataset; (3) Reconstructing the trained classification head via any set of user-desired textual concepts encoded by CLIP's text encoder. To reveal potentially missing concepts from users, we further propose to iteratively find the closest concept embedding to the residual parameters during the reconstruction until the residual is small enough. To the best of our knowledge, our "OpenCBM" is the first CBM with concepts of open vocabularies, providing users the unique benefit such as removing, adding, or replacing any desired concept to explain the model's prediction even after a model is trained. Moreover, our model significantly outperforms the previous state-of-the-art CBM by 9% in the classification accuracy on the benchmark dataset CUB-200-2011.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube