Papers
Topics
Authors
Recent
2000 character limit reached

radarODE: An ODE-Embedded Deep Learning Model for Contactless ECG Reconstruction from Millimeter-Wave Radar

Published 3 Aug 2024 in eess.SP and cs.AI | (2408.01672v2)

Abstract: Radar-based contactless cardiac monitoring has become a popular research direction recently, but the fine-grained electrocardiogram (ECG) signal is still hard to reconstruct from millimeter-wave radar signal. The key obstacle is to decouple the cardiac activities in the electrical domain (i.e., ECG) from that in the mechanical domain (i.e., heartbeat), and most existing research only uses pure data-driven methods to map such domain transformation as a black box. Therefore, this work first proposes a signal model for domain transformation, and then a novel deep learning framework called radarODE is designed to fuse the temporal and morphological features extracted from radar signals and generate ECG. In addition, ordinary differential equations are embedded in radarODE as a decoder to provide morphological prior, helping the convergence of the model training and improving the robustness under body movements. After being validated on the dataset, the proposed radarODE achieves better performance compared with the benchmark in terms of missed detection rate, root mean square error, Pearson correlation coefficient with the improvement of 9%, 16% and 19%, respectively. The validation results imply that radarODE is capable of recovering ECG signals from radar signals with high fidelity and can be potentially implemented in real-life scenarios.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.