Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving Audio Spectrogram Transformers for Sound Event Detection Through Multi-Stage Training (2408.00791v1)

Published 17 Jul 2024 in eess.AS and cs.SD

Abstract: This technical report describes the CP-JKU team's submission for Task 4 Sound Event Detection with Heterogeneous Training Datasets and Potentially Missing Labels of the DCASE 24 Challenge. We fine-tune three large Audio Spectrogram Transformers, PaSST, BEATs, and ATST, on the joint DESED and MAESTRO datasets in a two-stage training procedure. The first stage closely matches the baseline system setup and trains a CRNN model while keeping the large pre-trained transformer model frozen. In the second stage, both CRNN and transformer are fine-tuned using heavily weighted self-supervised losses. After the second stage, we compute strong pseudo-labels for all audio clips in the training set using an ensemble of all three fine-tuned transformers. Then, in a second iteration, we repeat the two-stage training process and include a distillation loss based on the pseudo-labels, boosting single-model performance substantially. Additionally, we pre-train PaSST and ATST on the subset of AudioSet that comes with strong temporal labels, before fine-tuning them on the Task 4 datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 11 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube