Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Comparing Optical Flow and Deep Learning to Enable Computationally Efficient Traffic Event Detection with Space-Filling Curves (2408.00768v1)

Published 15 Jul 2024 in cs.CV and cs.AI

Abstract: Gathering data and identifying events in various traffic situations remains an essential challenge for the systematic evaluation of a perception system's performance. Analyzing large-scale, typically unstructured, multi-modal, time series data obtained from video, radar, and LiDAR is computationally demanding, particularly when meta-information or annotations are missing. We compare Optical Flow (OF) and Deep Learning (DL) to feed computationally efficient event detection via space-filling curves on video data from a forward-facing, in-vehicle camera. Our first approach leverages unexpected disturbances in the OF field from vehicle surroundings; the second approach is a DL model trained on human visual attention to predict a driver's gaze to spot potential event locations. We feed these results to a space-filling curve to reduce dimensionality and achieve computationally efficient event retrieval. We systematically evaluate our concept by obtaining characteristic patterns for both approaches from a large-scale virtual dataset (SMIRK) and applied our findings to the Zenseact Open Dataset (ZOD), a large multi-modal, real-world dataset, collected over two years in 14 different European countries. Our results yield that the OF approach excels in specificity and reduces false positives, while the DL approach demonstrates superior sensitivity. Both approaches offer comparable processing speed, making them suitable for real-time applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com