Papers
Topics
Authors
Recent
Search
2000 character limit reached

Freiman's $3k-4$ Theorem for Function Fields

Published 31 Jul 2024 in math.NT and math.CO | (2408.00183v2)

Abstract: Freiman's $3k-4$ Theorem states that if a subset $A$ of $k$ integers has a Minkowski sum $A+A$ of size at most $3k-4$, then it must be contained in a short arithmetic progression. We prove a function field analogue that is also a generalisation: it states that if $K$ is a perfect field and if $S\supset K$ is a vector space of dimension $k$ inside an extension $F/K$ in which~$K$ is algebraically closed, and if the $K$-vector space generated by all products of pairs of elements of $S$ has dimension at most $3k-4$, then $K(S)$ is a function field of small genus, and $S$ is of small codimension inside a Riemann-Roch space of $K(S)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.