Papers
Topics
Authors
Recent
2000 character limit reached

LSTM-Based Net Load Forecasting for Wind and Solar Power-Equipped Microgrids

Published 31 Jul 2024 in eess.SY and cs.SY | (2408.00136v1)

Abstract: The rising integration of variable renewable energy sources (RES), like solar and wind power, introduces considerable uncertainty in grid operations and energy management. Effective forecasting models are essential for grid operators to anticipate the net load - the difference between consumer electrical demand and renewable power generation. This paper proposes a deep learning (DL) model based on long short-term memory (LSTM) networks for net load forecasting in renewable-based microgrids, considering both solar and wind power. The model's architecture is detailed, and its performance is evaluated using a residential microgrid test case based on a typical meteorological year (TMY) dataset. The results demonstrate the effectiveness of the proposed LSTM-based DL model in predicting the net load, showcasing its potential for enhancing energy management in renewable-based microgrids.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.