Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal design problem with thermal radiation (2408.00021v1)

Published 31 Jul 2024 in math.AP and math.OC

Abstract: This paper is concerned with configurations of two-material thermal conductors that minimize the Dirichlet energy for steady-state diffusion equations with nonlinear boundary conditions described mainly by maximal monotone operators. To find such configurations, a homogenization theorem will be proved and applied to an existence theorem for minimizers of a relaxation problem whose minimum value is equivalent to an original design problem. As a typical example of nonlinear boundary conditions, thermal radiation boundary conditions will be the focus, and then the Fr\'echet derivative of the Dirichlet energy will be derived, which is used to estimate the minimum value. Since optimal configurations of the relaxation problem involve the so-called grayscale domains that do not make sense in general, a perimeter constraint problem via the positive part of the level set function will be introduced as an approximation problem to avoid such domains, and moreover, the existence theorem for minimizers of the perimeter constraint problem will be proved. In particular, it will also be proved that the limit of minimizers for the approximation problem becomes that of the relaxation problem in a specific case, and then candidates for minimizers of the approximation problem will be constructed by employing time-discrete versions of nonlinear diffusion equations. In this paper, it will be shown that optimized configurations deeply depend on force terms as a characteristic of nonlinear problems and will also be applied to real physical problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube