Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computational Shape Derivatives in Heat Conduction: An Optimization Approach for Enhanced Thermal Performance (2403.20181v1)

Published 29 Mar 2024 in math.OC

Abstract: We analyze an optimization problem of the conductivity in a composite material arising in a heat conduction energy storage problem. The model is described by the heat equation that specifies the heat exchange between two types of materials with different conductive properties with Dirichlet-Neumann boundary conditions on the external part of the domain, and on the interface characterized by the resisting coefficient between the highly conductive material and the less conductive material. The main purpose of the paper is to compute a shape gradient of an optimization functional in order to accurately determine the optimal location of the conductive material using a classical shape optimization strategy. We also present some numerical experiments to illustrate the efficiency of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.