Papers
Topics
Authors
Recent
2000 character limit reached

Transfer Learning for Wildlife Classification: Evaluating YOLOv8 against DenseNet, ResNet, and VGGNet on a Custom Dataset

Published 10 Jul 2024 in cs.CV and cs.AI | (2408.00002v2)

Abstract: This study evaluates the performance of various deep learning models, specifically DenseNet, ResNet, VGGNet, and YOLOv8, for wildlife species classification on a custom dataset. The dataset comprises 575 images of 23 endangered species sourced from reputable online repositories. The study utilizes transfer learning to fine-tune pre-trained models on the dataset, focusing on reducing training time and enhancing classification accuracy. The results demonstrate that YOLOv8 outperforms other models, achieving a training accuracy of 97.39% and a validation F1-score of 96.50%. These findings suggest that YOLOv8, with its advanced architecture and efficient feature extraction capabilities, holds great promise for automating wildlife monitoring and conservation efforts.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 5 likes about this paper.