Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyper-parameter tuning for text guided image editing (2407.21703v1)

Published 31 Jul 2024 in cs.CV

Abstract: The test-time finetuning text-guided image editing method, Forgedit, is capable of tackling general and complex image editing problems given only the input image itself and the target text prompt. During finetuning stage, using the same set of finetuning hyper-paramters every time for every given image, Forgedit remembers and understands the input image in 30 seconds. During editing stage, the workflow of Forgedit might seem complicated. However, in fact, the editing process of Forgedit is not more complex than previous SOTA Imagic, yet completely solves the overfitting problem of Imagic. In this paper, we will elaborate the workflow of Forgedit editing stage with examples. We will show how to tune the hyper-parameters in an efficient way to obtain ideal editing results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Shiwen Zhang (27 papers)