Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Perfect quantum strategies with small input cardinality (2407.21473v1)

Published 31 Jul 2024 in quant-ph

Abstract: A perfect strategy is one that allows the mutually in-communicated players of a nonlocal game to win every trial of the game. Perfect strategies are basic tools for some fundamental results in quantum computation and crucial resources for some applications in quantum information. Here, we address the problem of producing qudit-qudit perfect quantum strategies with a small number of settings. For that, we exploit a recent result showing that any perfect quantum strategy induces a Kochen-Specker set. We identify a family of KS sets in even dimension $d \ge 6$ that, for many dimensions, require the smallest number of orthogonal bases known: $d+1$. This family was only defined for some $d$. We first extend the family to infinitely many more dimensions. Then, we show the optimal way to use each of these sets to produce a bipartite perfect strategy with minimum input cardinality. As a result, we present a family of perfect quantum strategies in any $(2,d-1,d)$ Bell scenario, with $d = 2kpm$ for $p$ prime, $m \geq k \geq 0$ (excluding $m=k=0$), $d = 8p$ for $p \geq 19$, $d=kp$ for $p > ((k-2)2{k-2})2$ whenever there exists a Hadamard matrix of order $k$, other sporadic examples, as well as a recursive construction that produces perfect quantum strategies for infinitely many dimensions $d$ from any dimension $d'$ with a perfect quantum strategy. We identify their associated Bell inequalities and prove that they are not tight, which provides a second counterexample to a conjecture of 2007.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.