Papers
Topics
Authors
Recent
2000 character limit reached

Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs

Published 30 Jul 2024 in math.NA and cs.NA | (2407.21085v1)

Abstract: In this paper, we design a novel algorithm based on Least-Squares Monte Carlo (LSMC) in order to approximate the solution of discrete time Backward Stochastic Differential Equations (BSDEs). Our algorithm allows massive parallelization of the computations on many core processors such as graphics processing units (GPUs). Our approach consists of a novel method of stratification which appears to be crucial for large scale parallelization. In this way, we minimize the exposure to the memory requirements due to the storage of simulations. Indeed, we note the lower memory overhead of the method compared with previous works.

Citations (54)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.