Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Anomalous State Sequence Modeling to Enhance Safety in Reinforcement Learning (2407.19860v1)

Published 29 Jul 2024 in cs.LG and cs.AI

Abstract: The deployment of AI in decision-making applications requires ensuring an appropriate level of safety and reliability, particularly in changing environments that contain a large number of unknown observations. To address this challenge, we propose a novel safe reinforcement learning (RL) approach that utilizes an anomalous state sequence to enhance RL safety. Our proposed solution Safe Reinforcement Learning with Anomalous State Sequences (AnoSeqs) consists of two stages. First, we train an agent in a non-safety-critical offline 'source' environment to collect safe state sequences. Next, we use these safe sequences to build an anomaly detection model that can detect potentially unsafe state sequences in a 'target' safety-critical environment where failures can have high costs. The estimated risk from the anomaly detection model is utilized to train a risk-averse RL policy in the target environment; this involves adjusting the reward function to penalize the agent for visiting anomalous states deemed unsafe by our anomaly model. In experiments on multiple safety-critical benchmarking environments including self-driving cars, our solution approach successfully learns safer policies and proves that sequential anomaly detection can provide an effective supervisory signal for training safety-aware RL agents

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.